Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications.

نویسندگان

  • J Y Lee
  • C Chang
  • H K Song
  • J Moon
  • J K Yang
  • H K Kim
  • S T Kwon
  • S W Suh
چکیده

DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilizing either ATP or NAD(+) as a cofactor. Despite the difference in cofactor specificity and limited overall sequence similarity, the two classes of DNA ligase share basically the same catalytic mechanism. In this study, the crystal structure of an NAD(+)-dependent DNA ligase from Thermus filiformis, a 667 residue multidomain protein, has been determined by the multiwavelength anomalous diffraction (MAD) method. It reveals highly modular architecture and a unique circular arrangement of its four distinct domains. It also provides clues for protein flexibility and DNA-binding sites. A model for the multidomain ligase action involving large conformational changes is proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I

DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structu...

متن کامل

A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli.

Escherichia coli DNA ligase (LigA) is the prototype of the NAD(+)-dependent class of DNA ligases found in all bacteria. Here we report the characterization of E.coli LigB, a second NAD(+)-dependent DNA ligase identified by virtue of its sequence similarity to LigA. LigB differs from LigA in that it lacks the BRCA1 C-terminus domain (BRCT) and two of the four Zn-binding cysteines that are presen...

متن کامل

Crystal structure of the Xrcc4 DNA repair protein and implications for end joining.

XRCC4 is essential for carrying out non-homologous DNA end joining (NHEJ) in all eukaryotes and, in particular, V(D)J recombination in vertebrates. Xrcc4 protein forms a complex with DNA ligase IV that rejoins two DNA ends in the last step of V(D)J recombination and NHEJ to repair double strand breaks. XRCC4-defective cells are extremely sensitive to ionizing radiation, and disruption of the XR...

متن کامل

Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics.

Mycobacteria contain genes for several DNA ligases, including ligA, which encodes a NAD(+)-dependent enzyme that has been postulated to be a target for novel antibacterial compounds. Using a homologous recombination system, direct evidence is presented that wild-type ligA cannot be deleted from the chromosome of Mycobacterium smegmatis. Deletions of native ligA in M. smegmatis could be obtained...

متن کامل

Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases.

We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of β-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2000